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CONTRACTOR REPORT

AN IMPROVEMENT IN THE NUMERICAL INTEGRATION PROCEDURE
USED IN THE NASA MARSHALL ENGINEERING THERMOSPHERE MODEL

I. INTRODUCTION

A. A PROBLEM WITH THE MET MODEL

The models which have been, and still are, used to describe
the properties of the neutral atmosphere between 90 and
2500km altitude at NASA/Marshall Space Flight Center have
all been based upon Jacchia’s empirical models [1,2]. The
former model was termed the MSFC/J70 model [3], and in the
Earth Science and Applications Division of the Structures
and Dynamics Laboratory the computer program used to output
data from this model was the J70MM. Recently the computer
code of the J70MM has been extensively modified, as
described in (4], and the resultant program has been termed
the NASA Marshall Engineering Thermosphere Model or the MET
model.

An intermittent problem in the density output of the
MSFC/J70 model was found to lie in the integration routine
which the model employed [4], and this problem was ap-
parently corrected in the MET model. The MSFC/J70 model and
the MET model both use Simpson’s Rule to numerically in-
tegrate the barometric and diffusion equations. Although
the implementation of the integration scheme employed in the
models is numerically fast, it has not always been found to
be reliable in the MSFC/J70 model. This unreliability was
discussed in detail in [4], where it was shown that the con-
vergence criterion employed was not always stringent enough.
In an effort to improve reliability, the MET model contained
a modification in the integration scheme which ensured that
above a certain altitude a predetermined minimum number of
iterations were performed before the convergence criterion
was employed. This modification did improve the reliability
of the integration method, but further examination has now
revealed it to be not as reliable as originally thought.
Therefore a new integration method was sought with the re-
quirements that it be at least as numerically fast and ac-
curate as the Simpson’s Rule employed in the MET model, but
that it should be totally reliable.




One method examined, which is known as Gaussian Quadrature,
was found to be more than adequate for this purpose. The
rest of this report is devoted to describing the implementa-
tion of the Gaussian Quadrature in the MET model as a re-
placement for the Simpson’s integration. Comparisons be-
tween the two different methods will be made, differences
will be discussed and finally recommendations will be made.

B. THE INTEGRAND

The problem of deciding which numerical method is best to
use will often depend on the behavior of the integrand one
is wishing to integrate. Therefore, before discussing the
integration procedure to be adopted, a short description of
the behavior of the integrand is in order.

Between 90 and 105km altitude the density is computed by in-
tegrating the barometric equation while above 105km altitude
it is computed by integrating the diffusion equation, as
described in Jacchia [1]. The barometric equation, wvalid
between 90 and 105km altitude is:

z

P2 = p(90) KL+ exp {5 fgo te az) (1)

while the diffusion equation, valid between 105 and 2500km
altitude is:

1+ o Z
ni(z) - ni(105) . E%%%gél] i * exp {-%ijlos % dz} . (2)

In Equation (1), p is the mass den51ty, T is the temperature,
M is the mean molecular weight, g is the gravitational ac-
celeration and k is the universal gas constant. In Equa-
tion (2), n; and M; are respectively the number den51ty and
molecular weight o% each individual atmospheric specie (N,
O,, O, A, He and H). Note that in the case of hydrogen
Equation (2) is applied only above 500km altitude; below
this altitude ny = 106 n~3 (ie. hydrogen density is
constant) .



One can see that the integrand in Equation (1) is gM/T while
in Equation (2) it is g/T. The empirical equations for g, T
and for M below 105km altitude, can be found in Jacchia [1].
The only adjustable parameters in these equations are the
exospheric temperature, T,, and the altitude, 2z, and thus
the integrand is only a function of T, and z. 1In order to
examine the behavior of the integrand %wo values of T, were
chosen which represent, though very approximately, extremes.
The chosen values were 500K and 2500K.

The value of gM/T is displayed in figure 1(a) for altitudes
between 90 and 105 km. The greatest variation of gM/T over
this altitude range occurs for T, equal to 2500K, but one
can see that the variation is quf%e small, being typically
less than 25%. Because the altitude variation of is
both small and continuous, the behavior of the integrand
should place no restrictions on the integration method
employed to integrate the barometric equation.

The value of g/T is displayed in Figure 1(b) for altitudes
between 105 and 2500km. Although g/T is a continuous func-
tion of altitude, its rapid variation at low altitudes may
tend to make its numerical integration either inefficient or
inaccurate. If the entire altitude region is separated into
a number of sub-regions, in such a way that g/T is slowly
varying in each of these sub-regions, difficulties with the
numerical integration of g/T will be circumvented. An ex-
panded representation of this region is shown in Figures
2(a) and 2(b). By a judicious choice of "sub-regioning,"
the altitude variation of g/T will place no restrictions on
the method employed to integrate the diffusion equation. 1In
what follows this is precisely the adopted procedure, but it
is noted in passing that this procedure has not been adopted
in the MET model nor the MSFC/J70 model and probably ac-
counts for some of the problems that these two models have
experienced when integrating the diffusion equation.

II. THE GAUSSIAN QUADRATURE

A. MATHEMATICAL DESCRIPTION

A concise and useful introduction to Gaussian Quadrature is
given in [5] and unless explicitly required it is not
repeated here.
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Gaussian Quadrature can only be applied if integration is
performed over the interval from -1 to +1, so that generally
a change of variable is required if this condition is to be
met. In the problem at hand integration will be between two
altitudes, say z, and z, (with 2,<z,), so that the following
transformation will be required:

z = (2p-2,) (le) + z; (3)

Thus, when x=-1, 2z=z,, and when x=+1, z=z,. Also,

dz = % (z5-z,)dx (4)

Thus, the altitude variable has been changed from z to x.
In Gaussian Quadrature the transformed integral is ap-
proximated - by the sum of the products of the integrand
(evaluated at a certain number of discrete points) and cer-
tain coefficients (associated with each of these points).
Mathematically this is stated as

1 N
J+ f(x) dx = Y C £(x) (5)
1 i=1

for some arbitrary function f. Thus, using (4) and (5),

Zq
: 1 N (6)
f(z) dz = 2 (z5-2,) ) Ci f(xi)
i=1
Zy




where the integrand f(z) is evaluated at certain discrete
values of x which correspond to certain values of z in Equa-
tion (3). The abscissas, x;, and the coefficients (or
weight factors), C;, for up to eight points (N=8) are given
in Table 1. It is worth noting that an N-point Gaussian in-
tegration can evaluate exactly the integral of a 2N-1 degree
polynomial.

Table 1. GAUSS QUADRATURE COEFFICIENTS AND ABSCISSAS

Abscissas = + X3 Weight Factors = C;

1
x4 Ci x5 Ci
.57735027 1.00000000 .23861919 0.46791393
.66120939 0.36076157
93246951 0.17132449
=3 =7
.00000000 0.88888889 .00000000 0.41795918
.77459667 0.55555556 .40584515 0.38183005
.74153119 0.27970539
94910791 0.12948497
=4 =8
.33998104 0.65214515 .18343464 0.36268378
.86113631 0.34785485 .52553241 0.31370665
.79666648 0.22238103
.96028986 0.10122854
N=5
.00000000 0.56888889
.53846931 0.47862867
.90617985 0.23692689

B. IMPLEMENTATION IN THE MET MODEL

The integral of gM/T between 90 and 105km was evaluated very
accurately using only a 4-point Gaussian integration scheme.
This is not too surprising if one takes a quick look at
Figure 1(a), and one also remembers that this scheme will




evaluate exactly the integral of a_seventh-degree polyno-
mial. The mean molecular weight, M, is represented by a
seventh-degree polynomial in altitude while in this small
altitude range the gravitational acceleration g, a quad-
ratic in altitude, is wvery slowly varying. Temperature T,
is represented by a fourth-degree polynomial in altitude in
this altitude range.

As discussed earlier, the large variations in g/T over the
altitude range of 105 to 2500km will present a problem for
most integration methods unless the whole region is
separated into a number of sub-regions. It was not surpris-
ing to find, therefore, that even an eight-point Gaussian
integration (which should exactly evaluate the integral of a
15-degree polynomial) could not accurately represent this
integral over the full altitude range, and thus a number of
sub-regions were constructed.

Within each sub-region the integral of g/T was evaluated by
an N-point Gaussian integration scheme, where the number of
points used in the integration, N, was determined by ex-
perimentation for each particular sub-region. After much
experimentation the whole region extending from 105 to
2500km was separated into seven sub-regions. The altitude
extent of each of these regions as well as the number of
points, N, used in the Gaussian integration for each region
is given in Table 2. For completeness, the region below
105km is also included.

Table 2. DEFINITION OF SUB-REGIONS

Altitude Range 90- 105- 125- 160- 200- 300- 500- 1500-
(km) 150 125 160 200 300 500 1500 2500

No. of points, 4 5 6 6 6 6 6 6

N, in Gaussian

integration

The incorporation of the Gaussian Quadrature into the MET
model was affected primarily by replacing subroutine IN-
TEGRATE with a new subroutine named GAUSS. This new sub-
routine handles the setting up of the sub-intervals (ie. the
altitude boundaries and the number of points required for



the Gaussian Quadrature for each sub-interval), and then
performs the Gaussian Quadrature in only seventeen lines of
executable code! Subroutine GAUSS can be found in the Ap-
pendix along with the associated FORTRAN coding of the MET
model.

III. RESULTS

In this section the integral and total mass densities are
evaluated by the standard integration method employed in the
MET model (using Simpson’s Rule) and by the new method
(Gaussian Quadrature) so that the two different integration
methods can be compared. For these two methods, the ac-
curacy and reliability of the results and the computat10na1
speeds will be compared. To ensure that the comparison is a
reliable one, it would be advantageous to know the exact
value of the desired quantity (the value of an integral or
the total mass density). Since this is not known, a
"reference" version of the MET model was written in double-
precision. This reference model employed Simpson’s Rule in
the same way that the MET model does, but, with three excep-
tions. F1rst1y, the convergence parameter (¢) is set equal
to 107 in the MET model, but in the double-precision
reference model, it is set to 107/ (it could have been set
even smaller than this, but the model would then have con-
sumed a prohibitive amount of CPU time). Secondly, in the
reference model, once convergence has been achieved, one
more iteration is performed and the convergence condition is
tested a second time. Two consecutive positive convergence
tests constitute convergence in this model. Lastly, whereas
the maximum number of sub- 1nterv?}s used in the Simpson’s
integration in the MET model is 21 , the Tgximum number that
can be used in the reference model is 2 These changes
ensure that the results obtained from the reference model
will be both accurate and reliable, but it should be remem-
bered that this is achieved at the expense of CPU time.

To present results for this report, two different sets of
input parameters were used in the models. The first set of
input parameters, which lead to a cold atmosphere with an
exospheric temperature of 597.361K, is as follows:



Date & Time: 1987, June 21, 0400 hr UT

Fi0.7 & Fyg.7¢ 70 Ap index: O
Latitude: 0 Longitude: O

The second set of input parameters lead to a hot atmosphere
with an exospheric temperature of 2554.217K and is given as:

Date & Time: 1987, October 27, 1400 hr UT
Fi0.7¢ 400 Fi0.7% 250 Ap index: 400
Latitude: 0 Longitude: 0

Although the exospheric temperatures for the cold and the
hot atmospheres are not the same as those which were used to
represent the extreme conditions shown in Figures 1 and 2,
the general behavior of the integrands will not be sig-
nificantly different so that the previous discussion of the
integrands will still apply. A good description of these
input parameters can be found in [3], and will not be
repeated here.

All of the results presented here (excepting those in sub-
section E) are represented graphically in figures 3 through
to 10. In order to maximize the sensitivity of the com-
parisons, a large number of data points were used in all of
the figures. 1In the 90-105km section nearly 100 data points
were generated while in the 105-2500km section some 800 data
points were generated.

A. COMPARISON OF THE INTEGRALS: THE 90 TO 105KM SECTION

In this altitude range the integral of gM/T is evaluated by
the three methods already discussed. The value of this in-
tegral calculated using the standard Simpson’s Rule as used
in the MET model is designated RS, and that calculated using

10



the reference model (double-precision, high accuracy
Simpson’s Rule) is designated RD, while that calculated
using Gaussian Quadrature is designated RG. This terminol-
ogy will be used throughout this report.

In order to compare RS and RG, the percentage deviations of
each of these from RD are calculated as:

% deviation = (R/RD - 1) x 100% (7)

where R is equal to either RS or RG. Later in this report,
density deviations will be calculated in a similar fashion.
Assuming the high-accuracy reference model gives correct
results means that these percentage deviations can then be
considered as errors in the other two integration methods,
and henceforth they will be referred to as such.

The error in RS as a function of altitude in the cold atmos-
phere is shown in Figure 3(a). At low altitudes, the errors
in RS are small, typically less than about 3x107°% in mag-
nitude, but they increase steadily _with increasing altitude
and approach a value close to 10 %, just below 102km al-
titude. Just after the maximum error is reached, the errors
decrease rapidly with an increase of altitude, and the
process appears to repeat itself again. The reason for this
behavior is quite simple. The number of sub-intervals used
in the Simpson’s Rule, which calculates RS, is the same for
all integration intervals extending from 90km to anywhere at
or below the altitude where the maximum error is achieved.

Above that altitude the number of sub-intervals is doubled.
The error is thus drastically reduced, but as one progresses
to greater altitudes, the error begins to increase again.
This behavior will be observed repeatedly in all of the
results employing Simpson’s Rule which follow, both in RS
and in density.

The error in RG as a function of altitude in the cold atmos-
phere is shown in Figure 3(b). The errors in RG are small

11
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at all altitudes, never exceedlng about 3x107°% in mag-
nitude. Most of this error is probably associated with
single-precision round- off7 because on the VAX 11/780 a
precision of one part in 10’ is typically to be expected in
the representatlon of a single-precision real number. A
comparison of figures 3(a) and 3(b) reveals that at very low
altitudes (between 90 and 95km altitude) the errors in using
Simpson’s Rule are very similar to those arising from the
use of the Gaussian Quadrature. However, at greater al-
t1tudes, the errors involved in the use of Simpson’s Rule
increase remarkably, while those associated with the use of
the Gaussian Quadrature remain essentially small and
bounded.

The results corresponding to the hot atmosphere are shown in
Figures 4(a) and 4(b). There are similarities between these
results and those shown in Figures 3(a) and 3(b), but once
again the overall trend is that the use of the Gaussian
Quadrature gives much smaller errors than through the use of
Simpson’s Rule. Typically more than an order of magnitude
smaller.

Extensive timing tests revealed that the Gaussian integra-
tion was always faster than the Simpson’s 1ntegrat10n. The
integrand was always evaluated four times in the Gaussian
integration. In the Simpson’s’ integration the integrand
was evaluated four times in the altitudes below where the
maximum errors occurred (~100km), and six times for al-
titudes above where the maximum errors occurred. At 105km
altitude the integration took twice the CPU time using
Simpson’s Rule, but the errors in RS were about an order of
magnitude larger than those in RG. Hence, in the 90-105km
altitude range the Gaussian integration can be twice as fast
and ten times more accurate than the Simpson’s integration.

B. COMPARISON OF THE INTEGRALS: THE 105 TO 2500KM SECTION

In the 105 to 2500km altitude range the integral of g/T is
evaluated by the three methods. The error in RS as a func-
tion of altitude in the cold atmosphere is shown in Figure
5(a). One notices that at 416km and around 1350km altitude
the errors in RS are extremely large, and are much larger
than, expected from the size of the convergence parameter
(10"*). These errors are not associated with round-off, but
are due to the unreliability of the Simpson’s’ integration
method as implemented in the current MSFC/J70 and NASA MET
models.

13
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The unreliability of this method, which is due to an oc-~
casional and unpredictable false convergence condition in
the iteration scheme, is discussed in [4]. At other al-
titudes, however, the Simpson’s integration method appears
to be reliable. In order to examine the errors associated
with the reliable results, the erroneous results were
changed to the same values as those of the neighboring al-
titudes. These errors, which were undiscernable in figure
5(a), are shown in Figure 5(b). The,K average errors appear
to have a magnitude of 1 to 2 x 10 %%, but maximum errors
can be as large as 8 x 10 *% in magnitude. Once the number
of sub-intervals used is doubled, the errors reduce drasti-
cally to magnitudes of about 3 x 10 °%.

The error in RG, as a function of altitude, in the cold at-
mosphere is shown in Figure 5(c). One notices that the er-~
rors associated with the Gaussian integration repain small
at all altitudes, being on average less than 10 °% in mag-
nitude. Thef%argest errors which occur are a little larger
than 2 x 10 °%, which is probably due mostly to round-off
error. The Gaussian integration method appears to be to-
tally reliable, showing no evidence of the type of errors
which can occur with integration by Simpson’s Rule (see
Figure 5(a)). When the integration using Simpson’s Rule is
successful, the errors associated with it are on average an
order of magnitude larger than those associated with the
Gaussian integration.

The equivalent set of results for the hot atmosphere are
shown in Figures 6(a), (b) and (c). Under these conditions
the Simpson’s integration appears to be more unreliable than
it was for the cold atmosphere (Figure 6(a)); and once again
integration by Simpson’s Rule introduced errors which are on
average an order of magnitude larger than these associated
with the Gaussian integration.

Extensive tests which measured the amount of CPU time that
was required to perform the integrations revealed that the
Gaussian integration was always faster than the Simpson’s
integration. It was faster by a factor of approximately 2
or 3 at 200km altitude (2 in the hot atmosphere and 3 in the
cold atmosphere), approximately 4.5 at 500km altitude, 7.4
at 1000km altitude increasing to about 12.5 at 2500km al-
titude. Thus, integration using Gaussian Quadrature will
save a considerable amount of CPU time over the use of
Simpson’s Rule.

16
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In the following two sub-sections, the densities calculated
for the two altitude regions using Gaussian Quadrature and
using Simpson’s Rule are compared in a similar way that the
comparisons were performed in the previous section.

C. COMPARISON OF THE DENSITIES: THE 90 TO 105KM SECTION

The errors ‘in the density values calculated using Simpson’s
Rule for the cold atmosphere between 90 and 105km altitude
are shown in Figure 7(a), while those associated with the
Gaussian Quadrature are shown in figure 7(b). The magnitude
of the maximum error 3ssociated with the use of Simpson’s
Rule is almost 2 x 10 “%. Over almost half of the altitude
range the magnitude of the errors associated g}th the use of
Simpson’s Rule is greater than about 2 x 10™ %, whereas in
the case of the Gaussian Quadrature these errors are "zero"
(within the accuracy of single-precision arithmetic) over
most (all but 2 km) of the altitude range. For the hot at-
mosphere, very similar results are obtained (see Figures
8(a) and 8(b)). Thus, independent of atmospheric conditions
(hot or cold), the densities are calculated significantly
more accurately using Gaussian Quadrature to integrate the
barometric equation than by using Simpson’s Rule in the 90-
105km altitude region.

D. COMPARISON OF THE DENSITIES: THE 105-2500KM SECTION

The errors in the density values calculated using Simpson’s
Rule for the cold atmosphere between 105 and 2500km altitude
are shown in Figure 9(a). The large errors at 416km and
1350km altitude are associated with the unreliability of the
Simpson’s integration method which gave large errors in the
calculations of the integral of g/T, as previously shown in
Figure 5(a). Once again, in order to examine the errors as-
sociated with reliable integration using simpson’s Rule the
large errors were removed from Figure 9(a), and the remain-
ing errors in the density values were re-plotted in Figure
9(b). :ghe magnitudes of the errors are usually smaller than
3 x 10 °% except j%Ft above 400km altitude where they rise
to almost 5.5 x 10 °%.

The corresponding errors in the density values calculated
using Gaussian Quadrature are shown in figure 9(c). These
errors are negative at all altitudes, meaning that the cal-
culated densities are smaller than they should be. The
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for the cold atmosphere below 105km altitude.

19




106 T T T T

102 - 7

Figure 8(a) 98}

ALTITUDE (KM)

R el
94 +
— ]
i —<
{
90 1 1 1 1

-1 -.8 -.6 -4 -.2 0

ERROR IN ps(x10-3%)

106 T T B L T T
: (——'——”’;
i 102 | 7
|
\ —~
= i
v R
‘ jou) i J
1 Figure 8(b) g 98
| 3
| H ! -
| e
=
<
94 + .
- — 1
90 1 I ‘l 1 [}
-3 -2 -1 0 1 2 3

ERROR IN pG(xlo-A%)

Figure 8. Error in the density evaluated using (a) Simpsons’s Rule and (b) Gaussian Quadrature
for the hot atmosphere below 105km altitude.

20



)

Figure 9(a)

Figure 9(b)

Figure 9(c)

ALTITUDE (KM) ALTITUDE (KM)

ALTITUDE (KM)

2500

2000 }

1500

1000

500}

.5 1
ERROR IN ps(‘)

1.5

2500

2000

1500

1000 {

500 }

=2

0 2

4

2500

2000

1500

1000 |

5001

ERROR IN pG(x10'3s)

0

Figure 9. Error in the density evaluated using (a) and (b) Simpson’s Rule (¢) Gaussian
Quadrature for the cold atmoshere above 105km altitude. See text for details.
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magnitudes of the errors also generally increase with in-
creasing altitude, being less than about 2.5 x 10_*% at low
altitudes and rising to values of about 3 x 1073% at the
highest altitudes. A comparison of Figures 9(c) and 9(b)
reveals that at the highest altitudes (say, greater than
1000km) the errors arising from the two integration methods
(Simpson’s Rule and Gaussian Quadrature) are much the samg,
providing that one overlooks the errors of about 3 x 10 “%
centered around 1350km altitude associated with the un-
reliability of the Simpson’s integration method employed in
the MET model. At low altitudes, however, the densities
calculated using the Gaussian Quadrature will always be ac-
curate, usually much more accurate than those calculated
using Simpson’s Rule.

The corresponding set of results for the hot atmosphere are
shown in Figures 10(a), (b) and (c). In the hot atmosphere
the Simpson’s integration method appears to be considerably
more unreliable than it is in the cold atmosphere (compare
Figures 9(a) and 10(a)). A comparison of figures 10(c) and
9(c) shows that the Gaussian Quadrature gives much more ac-
curate density values in the hot atmosphere than in the cold
atmosphere. In the hot atmosphere the magnitudes of these
errors are usually less than 4 x 10  *%, so that the Gaussian
Quadrature calculates densities significantly more ac-
curately than does the Simpson’s integration method at all
altitudes in the hot atmosphere.

E. A NUMERICAL EXAMPLE

Here, the density value output from the standard MET model
using Simpson’s Rule, Pg, the modified MET model using Gaus-
sian Quadrature, ~/;, and the high-precision reference model
(double precision, smaller tolerance, etc.), Pr, are given.
These results are for the hot atmosphere as defined by the
input parameters given on page 10, and for an altitude of
400km:

pg = 3.3844014 x 10'11kgm'3

P = 3.3844164 x 10'11kgm'3
pg = 3.3844164 x 10 ligm3
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Figure 10. Error in the diensity evaluated using (a) and (b) Simpson’s Rule and (c) Gaussian
Quadrature for the hot atmosphere above 105km altitude. See text for details.
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Thus, the error in the dengity value calculated with the MET
model is about -4.43 x 10 % while the corresponding error
with the modified MET model which uses Gaussian Quadrature
is zero.

IV. DISCUSSION

The evaluation of the integral of gM/T between 90 and 105km
altitude and g/T between 105 and 2500km altitude has been
performed by two different methods. The first of these
methods employs a modified form of Simpson’s Rule, basically
as used in the MSFC/J70 and NASA MET models. The second
method is Gaussian Quadrature. Extensive comparisons of the
results of using these two methods have revealed that in-
tegration by Gaussian Quadrature is significantly numeri-
cally faster than by Simpson’s Rule and that the integration
by Gaussian Quadrature is overall significantly more ac-
curate than by Simpson’s Rule. It was also found that at
certain altitudes the form of Simpson’s Rule used in the MET
model becomes unreliable, where errors in the results become
significantly larger than expected from the convergence
criterion used in the iterative scheme of the method. This
unreliability occurred more often in the hot atmosphere. No
such unreliability was evident in any of the results which
involved Gaussian Quadrature.

Extensive comparisons of the densities calculated using the
two methods revealed, not surprisingly, that those resulting
from the use of Gaussian Quadrature were overall sig-
nificantly more accurate than those resulting from the use
of Simpson’s Rule. Also, reliability of the calculated den-
sities was a problem with Simpson’s Rule, but not with the
Gaussian Quadrature. Any program which is written to calcu-
late densities will run faster if integration is done using
Gaussian Quadrature, however, just how much faster it will
run, than an equivalent program which integrates using
Simpson’s Rule, will depend on the nature of the particular
program involved. When Gaussian Quadrature was used, the
program which was used to generate the data files, which are
plotted in Figures 7(a) through to 10(c), ran only very
slightly faster at low altitudes and ran five times faster
above 2000km altitude.

To all intents and purposes the results obtained by using

the Gaussian Quadrature are as accurate and reliable as
those obtained from the "reference" model. One must recall
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that this "reference" model employed the same form of
Simpson’s Rule that is used in the MET model, but it is
written in double-precision. It has a convergence parameter
that is one-thousand times smaller than that used in the MET
model, and requires completion of two consecutive positive
convergence tests before convergence is accepted. It is no
wonder that integration using this reliable version of
Simpson’s Rule took anywhere from about 30 to 400 times
longer than by using Gaussian Quadrature.

One should also note that the choice of sub-interval
parameters which are given in Table 2 could possibly be im-
proved upon or modified to suit ones individual needs. For
general use, however, the values given in Table 2 are recom-
mended because they do not compromise on accuracy, and the
Gaussian Quadrature using these values still requires less
computational time than the standard method (Simpson’s Rule)
which is currently used in the MSFC/J70 and MET models.

Finally, it should be noted that if integration is performed
between two different altitudes (say z,, and z,) and the
fractional errors associated with this integration are
greater at one altitude (z,) than the other (z5), it does
not necessarily follow tha% when the densities are calcu-
lated the fractional error in the density at altitude 2z
will be greater than that at z,. This is because the den-
sity calculation involves integration errors being multi-
plied by numbers which are altitude dependent.
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V. CONCLUSIONS AND RECOMMENDATIONS

Although the reliability of the integration scheme used in
the MSFC/J70 model was improved in the MET model, the
results presented in this report have shown that it is still
not as reliable as desired. An alternative integration
scheme, based on Gaussian Quadrature, has been substituted
for the standard integration scheme used in the MET model
and has been found to be totally reliable. At low al-
titudes, it generally gives significantly more accurate den-
sity results than does the standard MET model, and uses less
computer time to do it. At high altitudes, it generally
gives results which have a similar accuracy to those of the
standard MET model, but it uses only a fraction of the com-
puter time to do it.

Due to the reliability, the accuracy, and the speed of this
new integration scheme, which uses Gaussian Quadrature, it
is recommended that this new scheme replace the older, more
unreliable scheme, based upon Simpson’s Rule, as presently
used in the MET model. If this is done, it is emphasized
that the integration parameters given in Table 2 should be
adhered to. This being the case, it is further recommended
that the program listed in the Appendix, which is also named
the NASA Marshall Engineering Thermosphere (MET) Model, and
which contains the essentials of this new integration scheme
in subroutine GAUSS, should replace the current MET program.
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APPENDIX

Cosssaee180000808822 0800808ttt sttt tsststttssteiestttessnsessssssstssssy

Ce

®
Ce The Marshall Space Flight Center .
Cs Marshall Engineering Thermosphere Model .
Ce .
Ce .
Cs written by °
Cs .
Ce Mike Hickey °
Cs Universities Space Research Association °
Cs NASA / MSFC , ED44 .
Ce Tel. (205) 544-5692 .
Ce .
Ce This progrom is a driving program for the foliowing subroutines :- .
Cs -
Cs ATMOSPHERES .
Ce SOLSET .
Cs TIME .
Cs J70 ®
Cs ]
Ce The atmospheric model is a modified Jacchia 1970 model and is given in .
Ce the subroutine J70. All of the other subroutines were designed to .
Ce allow flexible use of this model so thot various input parometers could e
Cs be varied within ¢ driving program with very little software development.s
Cs Thus, for example, driving routines can be written quite easily to .
Cs focilitate the plotting of output o= line or contour plots. Control is s
Cs achieved by setting the values of four switches in the driving program, e
Cs as described in subroutine ATMOSPHERES. L
Cs .

C.l.'.lt.“."..t“l“““tt.“t.“..tt.tt.‘t‘t““‘..t‘..‘.‘.‘.““..“.‘..“.
REALe4 INDATA (12) , OUTDATA (12) , AUXDATA (5)
CHARACTERs1 SWITCH (4)
CALL LIB$INIT_TIMER
C Set al! switches to 'Y’ so that only one particular calculation is performed
SWITCH (1) = *Y’
SWITCH (2) = 'Y’
SWITCH (3) = °*Y*
SWITCH (4) = *Y’
CALL ATMOSPHERES ( INDATA, OUTDATA, AUXDATA, SWITCH )

C Now type output data

Type =,’ All output in MKS units’

Type »,” '

Type »,’ Exospheric temperature = °, OUTDATA (1),’ K’

Type s,’ Temperature = ", OUTDATA (2),' K’

Type s,* N2 number density = *, OUTDATA (3),' /m3*

Type #,’ 02 number density = ', OUTDATA (4),° /m3’

Type »,’ O number density = ', OUTDATA (5),' /m3’

Type *,' A number density = *, OUTDATA (6),°’ /m3’

Type s,® He number density = ', OUTDATA (7),' /m3°

Type »,' H number density = ', OUTDATA (8),° /m3°

Type »,’ Average molecular wt. = °*, OUTDATA (9)

Type +,’' Total mass density = *, OUTDATA (10),’ kg/m3’

Type »,' Log1® mass density = *, OUTDATA (11)

Type =,* Total pressure = ', OUTDATA (12),’ Pa’

Type »,* Local grav. acceln. = ', AUXDATA (1), m.sec~2’
Type =,’ Ratio specific heats = °*, AUXDATA (2)

Type *,’ Pressure scale-height = ', AUXDATA (3),' m*

Type »,° Specific heat cons. p = *, AUXDATA (4),’'m2.sec~2.K-1’
Type »,’ Specific heat cons. v = *, AUXDATA (5),'m2.sec—2.K-1"*
Type »,° °



CALL LIB$SHOW_TIMER

STOP
END
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SUBROUTINE ATMOSPHERES ( INDATA, OUTDATA, AUXDATA, SWITCH )

c.“.““lt‘tt...‘.“t‘“l.‘..‘t‘..“t““‘.'t’.tli“t““‘.‘..lt..“‘t‘...“"
Cs DESCRIPTION:—~

Ce —_—

Cs

Cs Calculote atmospheric data in single precision using subroutine J70
C+ oand J70SUP.

Cs

Ce SUBROUTINES:~

Ce —

Cs

Ce TIME, SOLSET, GMC, J70 and J7@SUP

Cs

Cs INPUT : =~

Ce

C¢ —————— all single precision, either through
Cs ~————— subroutines or from main driver prog.
Cs

Cs INDATA (1) — altitude -2

Cs . (2) — latitude = XLAT

Ce .. (3) — longitude = XLNG

Ce .. (4) — year (yy) = IYR

Ce .« (5) — month (mm) = MN

Ce . (6) — day (dd) = IDA

Cs . (7) — hour (hh) = IHR

Cs .. (8) — mins (mm) = MIN

Cs .. (9) — geomagnetic index = IGEO_IND
Ce .+ (10)— solar radio noise flux= Fi@

Cs .. (11)— 162-day average F10 = F10B
Cs .. (12)— geomagnetic activity index = GI=AP

Cse

Cs

Cs OUTPUT:~

Cs

Ce

Cse NOTE : AIll output in MKS units

Cs

Cs

Ce all single precision

Cs

Cs

Cs OUTDATA (1) — exospheric temperature (K)

Cs .. (2) — tempercature at altitude Z

Cs . (3) — N2 number density (per meter—cubed)
Ce . (4) — 02 number density ( . )
Cs (5) — O number density ( . )
Ce (6) — A number density ( .. )
Cs (7) — He number density ( . )
Ce . (8) — H number density ( .. )
Cs . (9) — average molecular weight

Ce . (10)— total density
Ce . (11)— 10910 ( total density )
Cs . (12)— total pressure ( Pa )

— gravitational aocceleration ( m/s—s )
— ratio of specific heats

Ce .. (3) — pressure scale-height ( m )
— specific heat at constant pressure

Cs AUXDATA (1)

........I.......l..'.Q".Q....C.l.Q...I..'D..I.........Q...Q.Q.........

Cs (5) specific heat at constant volume

Cs

Cs

Ce COMMENTS : -

Cse [EEU—

C»

Cs SWITCH(1) — if Y(es), date and time are input from terminal through
Ce subroutine TIME once only

Cs SWITCH(2) — if Y(es), solar/magnetic activity are input from terminal
Ce through subroutine SOLSET once only

Cs SWITCH(3) — if Y(es), only ONE altitude value is input from terminal
Ce through main calling progrom

Ce SWITCH(4) — if Y(es), only ONE latitude AND longitude are input from
Cs terminal through main calling program

Cs»



Ce  ATMOSPHERES written by Mike Hickey ( USRA, NASA/ED44 ) °
Ce Tel: (205) 544-5692 .
Ce ~———— January-April 1987 ——————— L]

Cos89202805008885888808208585¢¢S080880000SS0SSEERSRSESSESLERRCIINISISCEEESE000S

EXTERNAL TIME

DIMENSION AUXDATA (5)

INTEGER HR

REALe4 LAT, LON, INDATA (12), OUTDATA (12)
CHARACTERe1 SWITCH (4)

PARAMETER PI = 3.14159265

c

c This next section is only executed on the first call to ATMOSPHERES
DO WHILE ( CALL. EQ. ©.0 )

C SECTION A:-

C ——

IF ( SWITCH(1). EQ. 'Y* ) THEN

CALL TIME ( IYR, MON, IDA, HR, MIN, SWITCH(1) )
INDATA (4) = FLOATJ (IYR)
INDATA (5) = FLOATJ (MON)
INDATA (8) = FLOATJ (IDA)
INDATA (7) = FLOATJ (HR)
INDATA (8) = FLOATJ (MIN)

END IF
C SECTION B:-
C —————

IF ( SWITCH(2). EQ. °'Y" ) THEN

CALL SOLSET ( IGEO_IND, F10, F10B, GI, SWITCH(2) )
INDATA (9) = FLOATJ (IGEO_IND)

INDATA (10) = F10

INDATA (11) = F1e8

INDATA (12) = GI

END IF

C SECTION C:-

C —————
IF ( SWITCH(3). EQ. 'Y" ) THEN
TYPE ¢,’ Input altitude, kn’
ACCEPT ¢, INDATA (1)
Z = INDATA (1)
END IF

C SECTION D:-

C ————

IF ( SWITCH(4). EQ. °'Y' ) THEN

TYPE ¢,’ Input latitude and longitude, degrees’

ACCEPT », ( INDATA(I), I= 2,3 )

LAT = INDATA (2)

LON = INDATA (3)

RLT = INDATA (2) e P1 / 180. ! geograophic latitude, raodiaons

END IF
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CALL = 1.0

END DO

c End of first executable section

c

C The following depend on the values of the switches

Ceess

Ce SECTION 1:-—

SWITCH(1). NE. °'Y*' ) THEN

INDATA (4) )
INDATA (5) )
INDATA (6) )
INDATA (7) )
INDATA (8) )

CALL TIME ( IYR, MON, IDA, HR, MIN, SWITCH(1) )

IF ( SWITCH(2). NE. 'Y' ) THEN

IGEO_IND = JINT ( INDATA (8) )
INDATA (1)
INDATA (11)
INDATA (12)

CALL SOLSET ( IGEO_IND, F10, F1@B, GI, SWITCH(2) )

IF ( SWITCH(3). NE. 'Y’ ) THEN

IF (
IYR = JINT (
MON = JINT (
IDA = JINT (
HR = JINT (
MIN = JINT (
END IF
Cosene
Ce SECTION 2:~
F10 -
F10B -
Gl =
END IF
Ceesss
Ce SECTION 3:—
Z = INDATA (1)
END IF
Cessss
Ce SECTION 4:-

IF ( SWITCH(4). NE. °Y* ) THEN

LAT = INDATA
LON = INDATA

RLT = INDATA (2) = PI / ige.

(2)
(3)

END IF

C All setting-up complete.

geographic latitude, radians

CALL J70 ( INDATA, OUTDATA )
CALL J70SUP ( Z, OUTDATA, AUXDATA )

RETURN

ENTRY ATMOS_ENT ( DUMMY )

CALL = DUMMY
RETURN

END



SUBROUTINE TIME ( IYR, MON, IDA, HR, MIN, SWITCH )

Cosstssesstsss st sst sttt st atsstsstststiteas et et s ss s eSS RSIRRRREBRIESERS

Cs
Cs
Cs
Ce
Cs
Cs
Cs
Cs
Cs
Cs
Cs
Cs

Cos2esessts st sttt sttt st sssssss ittt ittt essdetsstittsssissssssstsststonssntnss

IYR
MON
1IDA
HR

MIN

This subroutine sets up time of year aond day

INPUTS/OUTPUTS::

year ( 2 digits )
month

day of month

hour of day
minutes

Written by Mike Hickey, USRA

DIMENSION IDAY ( 12 )

INTEGER HR

CHARACTER*1 SWITCH

DATA IDAY / 31, 28, 31, 30, 31, 3o, 31, 31, 3o, 31, 30, 31 /
PARAMETER PI = 3.14159265

o000

If SWITCH = Y(es) then input data and time from terminal

IF ( SWITCH.EQ.'Y'. OR. SWITCH.EQ.'y*® ) THEN

TYPE », ' Input date and time of date? ( yy,mm,dd,hh,mm ) *
ACCEPT », IYR, MON, IDA, HR, MIN

END IF

IF ( JM0oD (IYR,4) .EQ. @ ) THEN
IF ( JMOD (IYR,100) .NE. © ) IDAY ( 2 ) = 29

IDAY ( 2 ) = 28

ELSE
END IF
DAYTOT = 9.0

DO 1 I =1, 12
DAYTOT = DAYTOT 4 FLOATJ ( IDAY (1) )
CONTINUE

IF ( MON. GT. 1) THEN

KE = MON -~ 1
ID=¢
D02 I=1, KE
ID = ID + IDAY (I)
CONTINUE

ID = ID + IDA

ELSE
DD = IDA

END IF
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SUBROUTINE SOLSET ( IGEO_IND, F1@, Fi1eB, GI, SWITCH )

CoHss3 8308853008088 ¢ 342 ER RS SRRRRRRRRERRRRRESEESLRSELESSEERSRESRISERERNAREES

Cs

.
Ce This subroutine simply calls for a setup of the solar—activty and auroral »
Cs gctivity indices. .
Ce .
Cs INPUTS/OUTPUTS: -
Cs .
Ces IGEO_IND = geomagnetic index .
Cs F1@ = solar radio noise flux .
Cs F10B = 162-day average F10 .
Cs GI = geomagnetic activity index .
Ce »
Cs Written by Mike Hickey, USRA .
c‘...‘l....‘.“t...‘...‘.“.“‘".'.‘..‘....‘.0...".‘..‘..‘.l.'.“...l‘..'....

CHARACTERs1 SWITCH

IGEO_IND = 2

OO0

If SWITCH = Y(es) then input geomagnetic indices from terminal

000000000

IF ( SWITCH.EQ.'Y'. OR. SWITCH.EQ.'y’ ) THEN

TYPE », * Input geomagnetic index ( 1-KP, 2—-AP ) °*
ACCEPT =, IGEOC_IND

TYPE =, * Input solar radio noise flux ( F10 = @-400 ) °*
ACCEPT =, Fi0O

TYPE =, * Input 162—day average F10 ( F10B = ©-250 ) °*
ACCEPT «, F10B

IF ( IGEO_IND . EQ. 2 ) THEN
TYPE «, ' Input geomagnetic octivity index ( GI = @—400 ) '
ELSE
TYPE », ' Input geomagnetic activity index ( GI = -9 ) °
END IF

TYPE =,’ Input AP index ( AP = @ — 400 ) °*

ACCEPT », GI
END IF

RETURN

END



SUBROUTINE J70SUP ( Z, OUTDATA, AUXDATA )

C‘..."..'.t...‘...‘....‘t#l......l..'..“'...‘..“..."“...l.““l...“...."

Cs
Cs
C»
Cs
Ce
Ce
Ce
Cs

Cs
Cs
Cs
Ce
Cs
Cs

12Z — temperature at altitude z = OUTDATA (2) .
— N2 number density = o (3) .

— 02 .. .. - (4) »

—_ 0 - (5) L ]

— A .. = (s) .

— He .. - (7) Y

— H .. .. - (8) Y

EM — average molecular weight - (9) .
DENS — total density - (10) ®
P — total pressure - (12) 0
*

OUTPUT DATA:- .

—_— .

.

G — gravitational acceleration = AUXDATA (1) .
GAM — ratio of specific heats =  AUXDATA (2) .
H — pressure scale-height =  AUXDATA (3) .
CP — specific heat at constant pressure = AUXDATA (4) ®
CV — specific heat at constant volume = AUXDATA (5) .
: )

Written by Mike Hickey, USRA .
CH85880888850822224022088 R3S RRRERRSESERSRBRREIESSSERSRSSESEINESREEESRSESEESES

L ]
DESCRIPTION:- .

——————— [ J

*

J70SUP calculates auxilliary variables which are output in array -
AUXDATA, given data input from J7@ which are contained in array OUTDATA.
*

°

*

*

L

INPUT DATA:—

altitude (km)

REAL*4 OUTDATA (12), AUXDATA (5), H
G =9.80665/ ( (1. + Z / 6.356766E3 )+e2 )
H = OUTDATA (12) / ( G ¢ OUTDATA (10) )
SUM1 = OUTDATA (3) + OUTDATA (4)
SUM2 = 9.0
. DOY1 I =5,8

SUM2 = SUM2 + OUTDATA (1)

CONTINUE
GAM = ( 1.4 ¢« SUM1 + 1.67 ¢ SUM2 ) / ( SUM1 + SuM2 )
CVmGeH/( (GAM=-1.8) ¢ OUTDATA (2) )
CP = GAM s CV
AUXDATA (1) = 6
AUXDATA (2) = GAM
AUXDATA (3) = H
AUXDATA (4) = CP
AUXDATA (5) = CcV

RETURN
END
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SUBROUTINE J7@ { INDATA, OUTDATA )

C"““‘.““l.'t‘..t."“".'..“..“t“‘t.t“...“‘.‘“‘...“t.l“...““.‘..

Ces
Ces
Css
Ces
Ceo
Ceo
Ces
Ces
Ceo
Cse
Ces
Cese
Cex
Css»
Ces
Ces
Cese
Css
Csa
Ces
Cses
Csese
Ces»
Ces
Ces
Csse
Css
Ces
Cee
Css
Cee
Cse
Ces
Css
Ces
Csse
Csee
Ces
Css
Css
Ces
Cas»
Cee
Css
Ces
Cas
Ces

INPUTS :

OUTPUTS:

NB.

J70 developed from J70MM by

Mike P. Hickey

Universities Space Research Association

at

NASA / Marshall Space Flight Center, ED44,
Huntsvilte, Alabama, 35812, USA.
Tel. (205) 544-5692

through the subroutine calling list

through the subroutine calling list

INPUT DATA:
Y4 — altitude
XLAT — latitude
XLNG — longitude
IYR — year (yy)
MN — month (mm)
IDA — day (dd)
IHR — hour (hh)
MIN — mins (mm)
11 — geomagnetic index
F16 —

FieB —

Gl —

T— exospheric temperature
T2Z— temperature at altitude Z

A(1)—
A(2)—
A(3)—
A(4)—
A(5)—
A(6)—

EM— average molecular weight

solar radio noise flux
162—-day average F10

geomagnetic activity index

QUTPUT DATA:

N2 number
02 number
O number
A number
He number
H number

density
density
density
density
density
density

DENS— total density

DL— togi@ ( total density )

P— total pressure

Input through array °INDATA®
Output through array °‘OUTDATA’

INDATA
INDATA
INDATA
INDATA
INDATA
INDATA
INDATA
INDATA
INDATA

= INDATA (10)
= INDATA (11)
= INDATA (12)

OUTDATA
OUTDATA
OUTDATA
OUTDATA
OUTDATA
OUTDATA
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C Calcultions performed for only one latitude , one longitude

DIMENSION A ( 6 )

REAL»4

INDATA ( 12 ), OUTDATA ( 12 )

PARAMETER RGAS = 8.31432E3
PARAMETER BFH = 440.0

C and one altitude

c

Css Set parameters to INDATA

c

JINT

JINT
JINT
JINT
JINT

JINT (

INDATA (1)
INDATA (2)
INDATA (3)

( INDATA
INDATA
( INDATA
( INDATA
( INDATA
( INDATA

INDATA (10)

values

(4) )
(5) )
(6) )
(7))
(8) )
(9))

+ 1900

I J/kmol—K



c

c

c Fill

F18B = INDATA (11)
GI = INDATA (12)

CALL TME ( MN , IDA , IYR, IHR , MIN , XLAT , XLNG , SDA ,
SHA , DD , DY )

CALL TINF ( F1@ , F18B , GI , XLAT , SDA , SHA , OY , I1 , TE)

CALL JAC ( Z . TE , TZ , A(1) , A(2) . A(3) ., A(4) . A(5) . A(6) .
EM , DENS , DL )

DENLG = O.
DUMMY = DL
DEN = DL

IF ( Z .LE. 170. ) THEN
CALL SLV ( DUMMY , Z , XLAT , DD )
DENLG = DUMMY

END IF

IF ( Z. GE. 500. ) THEN
CALL SLVH ( DEN , A(5) ., XLAT , SDA )
DL = DEN
ELSE IF ( Z .GT. BFH ) THEN
DHEL1 = A ( 5 )
DHEL2 = A ( 5 )
DLG1 = DL
DLG2 = DL
CALL SLVH ( DLG2 , DHEL2 , XLAT , SDA )
IH=2
CALL FAIRS ( DHEL1 , DHEL2 , DLG1 , DLG2 , IM , FDHEL , FDLG )
DL = FDLG '
A (5 ) = FDHEL
END IF

DL = DL + DENLG
DENS = 10.seDL
XLAT = XLAT e 57.29577951

OUTDATA arroy
OUTDATA (1) = TE
OUTDATA (2) = T2

D080 I=1,6
OUTDATA (I+2) = 1.E6 ¢
CONTINUE

( 10. =e A(I) )

OUTDATA (9) = EM

OUTDATA (10) = DENS ¢ 1000.
OUTDATA (11) = DL

P = OUTDATA (10) o RGAS ¢ TZ / EM
OUTDATA (12) = P

RETURN
END

Cse °Fair® helium number density between bose fairing height ( BFH ) and 500 km
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SUBROUTINE TME ( MN , IDA , IYR , IHR , MIN , XLAT
SDA , SHA , DD , DY )

+ XLNG ,

c.t‘..t.“...“‘...".“t‘.“‘.‘.“.-'.‘“....‘...."‘..t"“..‘...t'ttt..‘..‘.
Css Subroutine 'TME®’ performs the calculations of the solar declination

Ces
Cee
Ces
Ce»
Ces
Ceo
Css
Ces
Ces
Ces
Css
Css
Ces»
Ces
Gss
Csee

angle and solar hour angle.

INPUTS: MN = month
IDA = day
IYR = year
IHR = hour
MIN = minute
XMJD= mean Julian date
XLAT= latitude ( input—geocentric latitude )

XLNG= longitude ( input—geocentric longitude, —180,+180 )

OUTPUTS: SDA = solar declination angle (rad)
SHA = solar hour angle (rad)
DD = day number from 1 JAN.
DY = DD / tropical year
Modified by Mike Hickey, USRA
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20

Ces

Css

DIMENSION IDAY(12)

DATA IDAY / 31,28,31 ,30,31,30 ,31,31,30 ,31,30,31 /

PARAMETER YEAR = 365.2422

PARAMETER A1 = 99.6909833 , A2 = 36000.76892
PARAMETER A3 = ©.00838708 , A4 = ©.250684477
PARAMETER B1 = ©.0172028 |,
PARAMETER PI = 3.14159265 , TPI = 6.28318531
PARAMETER PI2 = 1.57079633 , PI32 = 4.71238898
PARAMETER RAD_DEG = ©.017453293

XLAT = XLAT / 57.29577951
YR = IYR

IF ( JMOD(IYR,4) .EQ. © ) THEN

B2 = ©.0335 , B3 = 1.407

IF ( JMOD(IYR,100) .NE. @ ) IDAY(2) = 29 | Century not a leap year

ELSE
IDAY(2) = 28
END IF
ID =0
IF ( MN. GT. 1 ) THEN
DO 20 I =1, M1
ID = ID + IDAY(I)
CONTINUE
END IF
ID = ID + IDA
DD = ID
DY = DD/YEAR

Compute mean Julian date

XMJD = 2415020. + 365. ¢ ( YR — 1900. ) + DD
+ FLOAT ( ( IYR - 1901 ) / 4 )

Compute Greenwich mean time in minutes GMT

XHR = IHR

XMIN = MIN

GMT = 60 o XHR + XMIN

FMJD = XMJD — 2435839. + GMT / 1440.
Compute Greenwich mean position — GP ( in rad )

XJ = ( XMJD - 2415020.5 ) / ( 36525.0 )

GP = AMOD ( Al + A2 @ XJ + A3 o XJ © XJ + A4 o GMT , 360. )

Compute right ascension point — RAP ( in rad )

1st convert geocentric longitude to deg longitude —

west neg , + east



IF ( XLNG .GT. 180. ) XLNG = XLNG — 360.
RAP = AMOD ( GP + XLNG , 360. )

Cc
Ces Compute celestial longitude — XLS ( in rad ) = — zero to 2PI
Cc
Y{ = Bl ¢ FMJD
Y2 = 9.017202 o ( FMJD - 3. )
XLS = AMOD ( Y1 + B2 ¢ SIN(Y2) - B3 , TPI )
(o

Ces Compute solar declination angle — SDA ( in rad )

B4 = RAD_DEG ¢ ( 23.4523 - 0.013 o XJ )
SDA = ASIN ( SIN ( XLS ) » SIN ( B4 ) )

c
Cee+ Compute right ascension of Sun — RAS ( in rad ) — — zero to 2PI
c
RAS = ASIN ( TAN ( SDA ) / TAN ( B4 ) )
c
Css Put RAS in same quadrant as XLS
c
RAS = ABS ( RAS )
TEMP = ABS ( XLS )
IF ( TEMP.LE.PI .AND. TEMP.GT.PI2 ) THEN
RAS = Pl — RAS
ELSE IF ( TEMP.LE.PI32 .AND. TEMP.GT.PI ) THEN
RAS = P] + RAS
ELSE IF ( TEMP.GT.PI32 ) THEN
RAS = TPI — RAS
END IF
IF ( XLS. LT. ©. ) RAS = —RAS
c
Cess Compute solar hour angle — SHA ( in deg ) — -
c

SHA = RAP o RAD_DEG — RAS
IF ( SHA.GT.PI ) SHA = SHA — TPI
IF ( SHA.LT.-PI ) SHA = SHA + TPI

RETURN
END
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SUBROUTINE TINF ( F10 , F1eB , GI, XLAT, SDA , SHA , DY , It , TE )

c..‘l"‘.‘“......‘..‘..‘.‘.“‘..‘......l.“.‘...‘.“.O.‘.“...‘.....t...‘..“‘

Css Subroutine 'TINF’ calculaotes the exospheric temperature according to s
Cs=+ L. Jacchia SAO 313, 1970 L4
Css= (1]
Ces F10 = solar radio noise flux ( x E-22 Watts / m2 ) e
Ces F10B= 162-day overage F10 s
Css GI = geomagnetic activity index .
Css LAT = geographic latitude at perigee ( in rad ) *e
Css SDA = solar dec!ination angle ( in rad ) *s
Ces SHA = solar hour angle s
Cee DY =D /Y ( day number / tropical year ) ; 1 e
Css 11 = geomagnetic equation index ( 1—GI=KP , 2—GI=AP ) .
Ces RE = diurnal factor KP, F10B, AVG e
Ces s
Cee CONSTANTS — C = solar activity variation s
Ces — BETA , etc = diurnal variation .s
Css — D = geomagnetic variation ..
Ces — E = semiannual variation e
Ce» (X
Ces Modified by Mike Hickey, USRA s

Co8423482 234080548838 0004RERRP0RSER SRS SRS REERRLEREEEELERLER LR RESEEEEROR

PARAMETER PI = 3.14159265 , TPI = 6.28318531
PARAMETER XM = 2.5 , XNN = 3.0

c
Cse Ci are solar activity variation variables
c
PARAMETER C1 = 383.0 , C2 = 3.32 , C3 = 1.80
c
Ces Di are geomagnetic variation variables
c
PARAMETER D1 = 28.0 , D2 = 0.83 , D3 = 1.0 , D4 = 100.0 , D5 = —0.08
c
Css Ei are semiannual variation variables
c
PARAMETER E1 = 2.41 , E2 = 0.349 , E3 = ©.206 , E4 = €.2831853
PARAMETER E5 = 3.9531708 , E6 = 12.5663706 , E7 = 4.3214352
PARAMETER E8 = ©.1145 , E9 = 0.5 , E10 = 6.2831853
PARAMETER E11 = 5.9742620 , E12 = 2.16
PARAMETER BETA = —-0.6457718 , GAMMA = ©.7504916 , P = 0.1047198
PARAMETER RE = ©.31
c
Ces solar activity variation
c
TC =C1 4+ C2 ¢ F10B + C3 » ( F10 — F10B )
c
Css diurnal variation
pt .
ETA = @.5 ¢ ABS ( XLAT - SDA )
THETA = ©.5 » ABS ( XLAT + SDA )
TAV = SHA + BETA + P o SIN ( SHA + GAMMA )
IF ( TAU. GT. PI ) TAU = TAU - TPI
IF ( TAU. LT.—PI ) TAU = TAU + TPI
Al = ( SIN ( THETA ) )eeXM
A2 = ( COS ( ETA ) )eaXM
A3 = ( COS ( TAU / 2. ) )esXNN
Bl = 1.0 + RE » Al
B2 = ( A2 - A1 ) / B
TV=B1e¢ (1. + RE* B2 » A3 )
TL=TC ¢ TV
c

Cse geomagnetic variation

IF ( 11.EQ.1 ) THEN

TG = D1 o GI + D2 * EXP(GI)
ELSE

TG =D3 ¢ Gl +D4 s (1 —EXP (D5 « GI ) )
END IF




Ces semiannual variation.

c
G3 = 0.5+« ( 1.0+ SIN ( E106 » DY + E11 ) )
G3 = G3 «» E12
TAU! = DY + E8 = ( G3 — ES )
Gl = E2 + E3 » ( SIN ( E4 s TAU1 + E5 ) )
G2 = SIN ( E6 « TAUI+ E7 )
TS = E1 + F10B ¢ G1 o G2

c

Css exospheric temperature

c

TE=TL+ TG + TS

RETURN
END
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SUBROUTINE JAC ( Z , T, TZ , AN, A2 , AO , AA, AHE , AH , BM ,
DENS , DL )

Cesossst0u 2088480888203 E02S08S0RERRREERERERRERRSSRERIRRRSNNRENSENERERREIREEES

Ces
Ces
Cee
Cse
Ces
Ces
Css
Cse
Ces

Subroutine *JAC’ calculates the temperature TZ , the total density DENS
and its logarithm DL, the mean molecular weight EM, the individual
specie number densities for N, 02, O, A, HE and H ( each preceded with
an *A’ ) at oltitude Z given the exospheric temperature T.

This subroutine uses the subroutine 'GAUSS’ and the function
subprograoms °TEMP' and °"MOL_WT'.

Rewritten by Mike Hickey, USRA
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Cse
Ceeo

c

DIMENSION ALPHA(6) , EI(6) , DI(6) , DIT(6)
REALs4 MOL_WT

PARAMETER AV = 6.02257E23
PARAMETER QN = .78110

PARAMETER Q02 = .20955
PARAMETER QA = .009343
PARAMETER QHE = 1.289E-85
PARAMETER RGAS = 8.31432
PARAMETER PI = 3.14159265
PARAMETER T®@ = 183.

GRAVITY ( ALTITUDE ) = 9.80665 / ( ( 1. + ALTITUDE / 6.356766E3 )se2

DATA ALPHA / 0.0 , 0.0 , 0.0 , 2.0 , —.380 , 0.0 /
DATA EI / 28.0134 , 31.9988 , 15.9994 , 39.948 , 4.0026 , 1.00797 /

TX = 444.3807 + .02385 ¢ T — 392.8292 e EXP ( —.0021357 ¢ T )
A2 = 2. o (T-TX) / PI
TX_TO = TX - TO

Ti = 1.9 ¢ TX_TO / 35.

T3 = ~1.7 o TX_TO / ( 35.¢s3 )

T4 = 0.8 ¢ TX_T0 / ( 35.¢34 )

TZ=TEMP (2, TX , T1 , T3, T4, A2 )
SECTION 1

A = g90.

D= AMINT ( Z , 105. )

Integrate gM/T from 90 to minimum of Z or 105 km :—

CALL GAUSS ( A, D, 1, R, TX , T1 , T3, T4 , A2 )

)

C The number 2.1926E-8B = density x temperature/mean molecular weight at 80 km.

EM = MOLWT (D)
TDO=TEMP (D, TX , T1 , T3 , T4 , A2 )

DENS = 2.1926E-8 ¢ EM ¢ EXP( =R / RGAS ) / TD
FACTOR = AV e DENS

PAR = FACTOR / EM
FACTOR = FACTOR / 28.96

C For altitudes below and at 105 km calculate the individual specie number
C densities from the meon molecular weight and tota! density.

42

IF ( Z. LE. 185 ) THEN

DL = ALOG1® ( DENS )
AN = ALOG1® ( QN » FACTOR )




c
Css
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Ces
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41

Ces
Ces

Css
Ces

42

AA = ALOG10 ( QA e FACTOR )
AHE = ALOG10 ( QHE e FACTOR )
AD = ALOG1® ( 2. e PAR ¢ ( 1.-EM / 28.96 ) )
AO2 = ALOG1® ( PAR ¢ ( EM® ( 1.4Q02 ) / 28.96~1. ) )
AH = 0,
Return to calling program
RETURN
END IF

SECTION 2 : This section is only performed for altitudes above 185 km

Note that having reached this section means that D in section 1 is 105 km.

Calculate individual specie number densities from the total density and mean
molecular weight at 105 km altitude.

DI(1) = QN e FACTOR
DI(2) = PAR ¢ (EM ® (1.4Q02) / 28.96~1.)
DI(3) = 2. ¢ PAR s (1.— EM / 28.96)
DI(4) = QA « FACTOR
DI(5) = QHE e FACTOR
Integrate g/T from 105 km to Z km :—

CALL GAUSS (D, 2, 2, R, TX , T1 , T3 , T4 , A2)
DO 41 I=1,5

DIT(I) = DI(I) o ( TD / TZ ) es(1.+ALPHA(I)) » EXP( -EI(I) ¢ R / RGAS)

IF ( DIT(I). LE. ©. ) DIT(I) = 1.E-6
CONTINUE

This section calculates atomic hydrogen densities above 500 km altitude.
Below this altitude , H densities are set to 10+s~6.

SECTION 3

IF ( Z .GT. 500. ) THEN

Al = 500.
S=TEMP (A1 ,TX , T1 , T3 , T4 , A2)

DI(6) = 10.#s ( 73.13 - 39.4 » ALOGIO (S) + 5.5 ¢ ALOG18(S) =ALOG10(S))
CALL GAUSS ( A1, Z, 7, R, TX , TV , T3 , T4 , A2)
DIT(6) = DI(6) * (S/TZ) o EXP ( —EI(6) e R / RGAS )
ELSE
DIT (6) = 1.0
END IF

For altitudes greater thon 185 km , calculate total density ond mean
molecular weight from individual specie number densities.

DENS=0
DO 42 I=1,6

DENS = DENS + EI(I) e DIT(I) / AV
CONTINUE
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EM = DENS o AV / ( DIT(1)4DIT(2)+DIT(3)4DIT(4)4DIT(5)+DIT(6) )
DL = ALOG1@ (DENS)

AN = ALOG1@(DIT(1))
AO2 = ALOG1@(DIT(2))
A0 = ALOG10(DIT(3))
AA = ALOG10(DIT(4))
AHE = ALOG1@(DIT(5))
AH = ALOG1@(DIT(6))

RETURN
END



FUNCTION TEMP ( ALT , TX , T1 , T3 , T4 , A2)

c‘.“"‘.‘.l‘...“““".‘..“‘.‘.‘.‘..'...lt“.‘.‘.‘..‘.".t..“..“.‘.“.“..

Cs=»
Ces
Ces»
Css
Ces
Ces

Function subprogram ‘TEMP® calculates the temperature at altitude ALT
using equation (10) for altitudes between 92 and 125 km and equation
(13) for altitudes greater than 125 km , from SAO Report 313.

Written by Mike Hickey, USRA
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PARAMETER BB = 4.5g-6

U = ALT — 125.
IF (U .GT . ©. ) THEN

TEMP = TX + A2 @« ATAN ( T1 o U o ( 1. + BB o (Uee2.5)) / A2 )

ELSE
TEMP = TX + Tl o U + T3 e (Uss3) + T4 o (Uses)
END IF

END

REAL FUNCTION MOL_WTe4 ( A )

Cresse24842880 00820 R0 RS2SRRSR ESRSRRRRESSSEREELEESLESLERINEISSESEISSSEEES

Css
Ces
Cs»
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Subroutine 'MOL_WT' calculates the molecular weight for altitudes
between 90 and 105 km according to equation (1) of SAO report 313.
Otherwise, MOL_WT is set to unity.

Written by Mike Hickey, USRA

CHesssssssssssssss sttt st s sss it sttt eSS RERRAREE RS eORERRRORORENS

DIMENSION B (7)

DATA B / 28.15204 , —0.085586, 1.284E—4, —1.0056E-5, -1.021E-5,
1.5044E~6, 9.9826E-8 /

IF ( A. GT. 105. ) THEN
MOL_WT = 1.
ELSE
U=A- 100.
MOL_WT = B (1)
DO 1 I1=2,7
MOL_WT = MOLLWT + B (I) ¢ U s ( I-1)
CONTINUE
END IF

END
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SUBROUTINE GAUSS ( 21 ., Z2 , NMIN , R, TX , Tt , T3 , T4 , A2 )

C“‘.‘.l".....‘....‘.t‘.‘.“..‘.‘...‘.O.‘.““t.“"““‘.“.‘...‘...‘....“‘.
Ces Subdivide total integration—altitude range into intervals suitable for s«
Css applying Gaussian Quadrature , set the number of points for integration »»
Cs+ for each sub—interval , and then perform Goussian Quadrature. s
Cse Written by Mike Hickey, USRA, NASA/MSFC, ED44, July 1988. .

Cressssssssstosssns st sttt st sstets st nsssnssssdstssnsstssstttstssssnsssssssess

REALs4  ALTMIN (9) . C(8,6), X(8.6), MOL_WT
INTEGER NG (8) , NGAUSS , NMIN , J

GRAVITY ( ALTITUDE ) = 9.80665 / ( ( 1. + ALTITUDE / 6.356766E3 )ss2 )

DATA ALTMIN / S@., 105., 125., 160., 200., 3e0., 5ee., 15e0., 2500. /
DATA NG / 4,5 , 6 , 6 , 6 , 6 , 6 ,6/

C Coefficients for Gaussion Quadrature ...

DATA C / .5555556 , .8888889 , .5555556 , .0020000 , | n=3
. .0000000 , .0000000 , .0000000 , .0000000 , | n=3
. .3478548 , .6521452 , .6521452 , .3478548 , | n=4
. .0000000 , .0000000 , .0000000 , .0000000 , | n=4
. .2369269 , .4786287 , .5688889 , .4786287 , | n=5
. .2369269 , .0000000 , .0000000 , .0000000 , | n=5
. 1713245 , .3607616 , .4679139 , .4679139 , | n=b
. .3607616 , .1713245 , .0000000 , .0000000 , | nm=6
. .1294850 , .2797054 , .3818301 , .4179592 , | n=w7
. . 3818301 , .2797054 , .1294850 , .0000000 , | n=7
. .1012285 , .2223810 , .3137067 , .3626838 , | nmu8
. .3626838 , .3137067 , .2223810 , .1012285 / | n=8
C Abscissas for Goussian Quadrature ...
DATA X / —-.7745967 , .0000000 , .7745967 , .0000000 , | n=3
. .0000000 , .0000000 , .0000000 , .0000000 , ! n=3
. -.8611363 , —.3399810 , .3399810 , .8611363 , | nm4
. .0000000 , .0000000 , .0000000 , .0000000 , | n=4
. -.9061798 , —.5384693 , .0000000 , .5384683 , ! n=5
. .9061798 , .0000000 , .0000000 , .0000000 , | n=5
. -.9324695 , -.6612094 , —-.2386192 , .2386192 , | n=6
. .6612094 , .9324695 , .0000000 , .0000000 , | n=6
. —-.9491079 , —.7415312 , —.4058452 , .0000000 , ! nm7
. .4058452 , .7415312 , .9491079 , .0000000 , | n=7
. -.9602899 , ~.7966665 , ~.5255324 , —.1834346 , | n=8
. .1834346 , .5255324 , .7966665 , .9602899 / | n=8
R = 0.0
DO 2 K= NMIN, 8
NGAUSS = NG (K)
A = ALTMIN (K)
D = AMINt ( 22 , ALTMIN (K+1) )
RR = 0.0

DEL=9.59 (D-A)
J = NGAUSS - 2

DO 1 I = 1, NGAUSS

Z=DEL e ( X(I.J)+1.) +A
RR = RR + C(I,J) » MOL_WT(Z) e GRAVITY(Z) / TEMP ( Z,TX.T1,T3,T4,A2 )

1 CONTINUE
RR = DEL s RR
R =R + RR
IF ( D .EQ. 22 ) RETURN
2 CONT INUE CRIGINAL PACE IS
o { [y ¥ ‘ 1
RETURN OF FOOR QUALITY
END




SUBROUTINE SLV ( DEN , ALT , XLAT , DAY )

Cressessssssssssssssssstss sttt s sttt st ss sttt sttt eRs s ts oS00SR EsSSSSS

Css Subroutine °'SLV’ computes the seasonal—latitudinal variation of density
Cses in the lower thermosphere in accordance with L. Jacchia, SAO 332, 197%.
Ces This affects the densities between 90 ond 170 km. This subroutine need
Ces not be called for densities aobove 170 km, becouse no effect is observed.
Ces

Cse The variation should be computed after the calculation of density due to
Ces temperature variations and the density ( DEN ) must be in the form of a
Ces base 10 log. No adjustments are made to the temperature or constituent

Cs+ number densities in the region affected by this variation.
Cas

Ces DEN = density (log1@)

Ces ALT = gltitude (km)

Ces XLAT = |atitude (rad)

Css» DAY = day number

Cse

L 2
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Cee initialize density (DEN) = 0.0

c
DEN = 0.0
c
Ces check if altitude exceeds 170 km
c
IF ( ALT. GT. 170. ) RETURN
c
Ce» compute density change in lower thermosphere
c
Z = ALT - 90.
X=-0.0013 ¢ Z ¢ 2
Y = 0.8172 ¢ DAY + 1.72
P = SIN (Y)
SP = ( SIN (XLAT) ) se2
S=0.014 ¢ Z o EXP (X)
D=S ¢« P s SP
c
Cees check to compute absolute value of °*XLAT®
c
IF ( XLAT. LT. @. ) D = -D
DEN = D
RETURN
END
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SUBROUTINE SLVH ( DEN , DENHE , XLAT , SDA )

Cl.‘.“‘..‘t‘.“‘.‘........“"““..“..““.‘.“.""“..““.‘...““‘.‘.t..

Cs+ Subroutine °‘SLVH' computes the seasonal—latitudinal varacition of the e
Ce+ heiium number density according to L. Jacchia, SAO 332, 1871. This e
Cees correction is not important below about 500 km. *s
Cee e
Cse DEN = density (logi@) .s
Cese DENHE = helium number density (1og1@) ..
Ces XLAT = jatitude (rad) se
Ces SDA = solar declination angle (rad) se

Cres088088058020358834088808885020858008SEERRNESSSRNESRERELSEREERRNSSSEEBRIER

D0 = 10. #e DENHE
A= ABS ( .65 ¢ ( SDA / ©.40909079 ) )

B = 0.5 ¢ XLAT

c
Cse Check to compute absolute value of °'B*
c
IF ( SDA. LT. ©. ) B = -B
c
Cse compute X, Y, DHE and DENHE
c
X = 0.7854 - B
Y = (SIN (X) ) »¢ 3
DHEm= A o ( ¥ — 0.35356 )
DENHE = DENHE + DHE
c
Css compute he!ium number density change
(o4

D1 = 10. =»s DENHE

DElL= D1 - DO

RHO= 1@. s+ DEN

DRHO = ( 6.646E-24 ) e DEL
RHO = RHO + DRHO

DEN = ALOG10 (RHO)

RETURN
END



SUBROUTINE FAIR5 ( DHEL1 ,DHEL2 ,DLGY ,DLG2 ,IH ,FDHEL ,FDLG )

C.‘..l.“‘"‘...‘t.l“l."‘..“..“‘.‘..".“..‘.‘..‘.O‘.‘.‘.“‘..‘.“‘O.‘."‘.
This subroutine fairs between the region above 500 km, which invokes the »s
seasonal—fatitudinal variation of the helium number density ( subroutine s»
SLVH ), and the region below, which does not invoke any seasconal-
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o O O O O

latitudinal vaoriation at all.

INPUTS: DHEL1 = helium number density before invoking SLVH
DHEL2 = hefium number density after invoking SLVH
DLG1 = total density before invoking SLVH

DLG2
IH
IBFH
OUTPUTS: FDHEL
FOLG

total density after invoking SLVH
height ( km ) — INTEGER

base fairing height ( km ) — INTEGER
faired helium number density

foired total density

Written by Bill Jeffries, CSC, Huntsville, AL.
ph. (205) 83e-1000, x311
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DIMENSION CZ ( 6 )

DATA CZ / 1.0, ©.9045085, 0.6545085, ©.3454915, 0.0954915, 0.0 /

PARAMETER IBFH = 440

Height index
I=(IH-1BFH ) /10 + 1
Non—SLVH fairing coefficient
CZI=CZ (1)
SLVH fairing coefficient
SZIl = 1.0 ~ CZI
Faired density

FOLG = ( DLG1 o CZI ) + ( DLG2 o SZI )

Fgired helium number density

FDHEL = ( DHEL1 e CZI ) + ( DHEL2 e SZI )

RETURN
END
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